人教版小学数学六年级公式大全

  第一单元分数乘法

  一、分数乘法

  (一)分数乘法的意义:

  1、分数乘整数与整数乘法的意义相同。都是求几个相同加数的和的简便运算。

  2、一个数乘分数的意义是求一个数的几分之几是多少。

  (二)、分数乘法的计算法则:

  1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。(整数和分母约分)

  2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

  3、为了计算简便,能约分的要先约分,再计算。(尽量约分,不会约分的就不约,常考的质因数有11×11=121;13×13=169;17×17=289;19×19=361)

  4、小数乘分数,可以先把小数化为分数,也可以把分数化成小数再计算。

  (三)、 乘法中比较大小的规律

  一个数(0除外)乘大于1的数,积大于这个数。

  一个数(0除外)乘小于1的数(0除外),积小于这个数。

  一个数(0除外)乘1,积等于这个数。

  (四)、分数混合运算的运算顺序和整数的运算顺序相同。整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。

  乘法交换律: a×b = b×a

  乘法结合律: (a×b)×c=a×(b×c )

  乘法分配律: (a+b)×c =ac+bc

  二、分数乘法的解决问题(已知单位“1”的量(用乘法),即求单位“1”的几分之几是多少)

  1、画线段图:(1)两个量的关系:画两条线段图,先画单位一的量,注意两条线段的左边要对齐。(2)部分和整体的关系:画一条线段图。

  2、找单位“1”: 单位“1” 在分率句中分率的前面;

  或在“占”、“是”、“比”“相当于”的后面。

  3、写数量关系式的技巧:

  (1)“的” 相当于 “×” ,“占”、“相当于”“是”、“比”是 “ = ”

  (2)分率前是“的”字:用单位“1”的量×分率=具体量

  4、看分率前有没有多或少的问题;分率前是“多或少”的关系式:

  (比少):单位“1”的量×(1-分率)=具体量;

  (比多):单位“1”的量×(1+分率)=具体量

  3、求一个数的几倍是多少:用 一个数×几倍;

  4、求一个数的几分之几是多少: 用一个数×几分之几。

  5、求几个几分之几是多少:用几分之几×个数

  6、求已知一个部分量是总量的几分之几,求另一个部分量的方法:

  (1)、单位“1”的量×(1-分率)=另一个部分量(建议用)

  (2)、单位“1”的量-已知占单位“1”的几分之几的部分量=要求的部分量

  第二单元位置与方向(二)

  确定物体位置的方法:1、先找观测点;2、再定方向(看方向夹角的度数);3、最后确定距离(看比例尺)

  描绘路线图的关键是选好观测点,建立方向标,确定方向和路程。

  位置关系的相对性:1、两地的位置具有相对性在叙述两地的位置关系时,观测点不同,叙述的方向正好相反,而度数和距离正好相等。

  相对位置:东--西;南--北;南偏东--北偏西。

  第三单元分数除法

  三、倒数

  1、倒数的意义: 乘积是1的两个数互为倒数。

  强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。

  2、求倒数的方法:

  (1)、求分数的倒数:交换分子分母的位置。

  (2)、求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。

  (3)、求带分数的倒数:把带分数化为假分数,再求倒数。

  (4)、求小数的倒数: 把小数化为分数,再求倒数。

  3、 1的倒数是1; 因为1×1=1;0没有倒数,因为0乘任何数都得0,(分母不能为0)  4、真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。

  5、运用,a×1/2=b×1/4求a和b是多少。把a×1/2=b×1/4看成等于1,也就是求1/2的倒数和求1/4的倒数。

  1、分数除法的意义:

  乘法: 因数 × 因数 = 积

  除法: 积 ÷ 一个因数 = 另一个因数

  分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。

  2、分数除法的计算法则:

  除以一个不为0的数,等于乘这个数的倒数。

  3、分数除法比较大小时的规律:

  (1)当除数大于1,商小于被除数;

  (2)当除数小于1(不等于0),商大于被除数;

  (3)当除数等于1,商等于被除数。

  “[ ]”叫做中括号。一个算式里,如果既有小括号,又有中括号,要先算小括号里面的, 再算中括号里面的。

  二、分数除法解决问题

  1,解法:(1)方程: 根据数量关系式设未知量为X,用方程解答。

  解:设未知量为X (一定要解设),再列方程 用 X×分率=具体量

  (2)算术(用除法):单位“1”的量未知用除法:

  即已知单位“1”的几分之几是多少,求单位“1”的量。

  分率对应量÷对应分率 = 单位“1”的量

  2、看分率前有没有比多或比少的问题;

  分率前是“多或少”的关系式:

  (比少):具体量÷ (1-分率)= 单位“1”的量;

  (比多):具体量 ÷ (1+分率)= 单位“1”的量

  3、求一个数是另一个数的几分之几是多少: 用一个数除以另一个数,结果写为分数形式。

  4、求一个数比另一个数多几分之几的方法:

  用两个数的相差量÷单位“1”的量 =分数

  即①求一个数比另一个数多几分之几:用(大数–小数) ÷另一个数(比那个数就除以那个数),结果写为分数形式。

  ②求一个数比另一个数少几分之几:用(大数–小数) ÷另一个数(比那个数就除以那个数),结果写为分数形式。

  多几分之几不等于少几分之几,因为单位一不同。

  工程问题:把工作总量看作单位“1”,合做多长时间完成一项工程用1÷效率和,即1÷(1/时间+1/时间),(工作效率=1/时间)

  第四单元比

  (一)、比的意义

  1、比的意义:两个数相除又叫做两个数的比。

  2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。

  a  ∶   b  =  a/b

  前项 比号 后项    比值

  3、比可以表示两个相同量的关系,即倍数关系。例:长是宽的几倍。

  也可以表示两个不同量的比,得到一个新量。例: 路程÷速度=时间。

  4、区分比和比值

  比:表示两个数的关系,可以写成比的形式,也可以用分数表示。

  比值:相当于商,是一个数,可以是整数,分数,也可以是小数。

  5、根据分数与除法的关系,两个数的比也可以写成分数形式。

  6、 比和除法、分数的联系:

  比:前 项 比号“:” 后 项:比值

  除 法:被除数 除号“÷” 除 数:商

  分 数:分 子 分数线“—” 分 母:分数值

  7、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。

  8、根据比与除法、分数的关系,可以理解比的后项不能为0。

  9、体育比赛中出现两队的比分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。

  10、求比值:用前项除以后项,结果最好是写为分数

  (二)、比的基本性质

  1、根据比、除法、分数的关系:

  商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。

  分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。

  比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

  2、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。

  3、根据比的基本性质,可以把比化成最简单的整数比。

  4.化简比:

  (2)用求比值的方法。注意: 最后结果要写成比的形式。

  5、比中有单位的,化简和求比值时要把单位化相同再化简和求比值,结果没有单位。

  6.按比例分配:把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。一般有两种解题法

  1,用分率解:按比例分配通常把总量看作单位一,即转化成分率。要先求出总份数,再求出几份占总份数的几分之几,最后再用总量分别乘几分之几。

  2,用份数解:要先求出总份数,再求出每一份是多少,最后分别求出几份是多少

  第五单元圆的认识

  一、认识圆形

  1、圆的定义:圆是由曲线围成的一种平面图形。

  2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。一般用字母O表示。它到圆上任意一点的距离都相等.

  3、半径:连接圆心到圆上任意一点的线段叫做半径。一般用字母r表示。把圆规两脚分开,两脚之间的距离就是圆的半径。

  4、直径:通过圆心并且两端都在圆上的线段叫做直径。一般用字母d表示。直径是一个圆内最长的线段。

  5、圆心确定圆的位置,半径确定圆的大小。

  6、在同一个圆内或等圆内,有无数条半径,有无数条直径。所有的半径都相等,所有的接近长方形。 长方形的长相当于圆的周长的一半,长方形的宽相当于圆的半径。

  (2)拼出的图形与圆的周长和半径的关系。

  圆的半径    =   长方形的宽

  圆的周长的一半  =   长方形的长

  3、圆面积的计算方法:因为:长方形面积 = 长 ×宽

  所以:圆的面积 = 圆周长的一半 × 圆的半径

  即S圆 = C÷2× r=πr × r=πr

  圆的面积公式:S圆 =πr    r = S 圆÷ π

  4、环形的面积:一个环形,外圆的半径用字母R表示,内圆的半径用字母r表示。(R=r+环的宽度.)

  S环 = πR-πr或环形的面积公式:S环 = π(R-r)(建议用这个公式)。

  5、一个圆,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。而面积扩大或缩小的倍数是这倍数的平方倍。

  6、两个圆: 半径比 = 直径比 = 周长比;而面积比等于这比的平方比。

  7、任意一个正方形与它内切圆的面积之比都是一个固定值,即:4∶π

  8、当长方形,正方形,圆的周长相等时,圆面积最大,正方形居中,长方形面积最小。反之,面积相同时,长方形的周长最长,正方形居中,圆的周长最短。

  9、常用各π值结果:π = 3.14;2π = 6.28 ;5π=15.7

  10、外方内圆(内切圆)公式S=0.86r推导过程:S=S正-S圆=d-πr =2r×2r-πr=4r-πr=r×(4-π)=0.86r

  11、外圆内方(外切圆)公式S=1.14r推导过程:S=S圆-S正=πr-dr/2×2=2r×r/2×r=πr-2r=r×(π-2)=1.14r(把正方形看成两个面积相等的三角形,三角形的底就是直径,高是半径)

  12、一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。顶点在圆心的角叫做圆心角。扇形的面积与圆心角大小和半径长短有关。

  S扇=S圆×n/360;S扇环=S环×n/360

  第六单元百分数

  一、百分数的意义和写法

  (一)、百分数的意义:表示一个数是另一个数的百分之几。百分数是指的两个数的比,因此也叫百分率或百分比。

  (二)、百分数和分数的主要联系与区别:

  联系:都可以表示两个量的倍比关系。

  区别:①、意义不同:百分数只表示两个数的倍比关系,不能表示具体的数量,所以不能带单位;

  分数既可以表示具体的数,又可以表示两个数的关系,表示具体数时可以带单位。

  ②、百分数的分子可以是整数,也可以是小数;

  分数的分子不能是小数,只能是除0以外的自然数。

  3、百分数的写法:通常不写成分数形式,而在原来分子后面加上“%”来表示,读作百分之。

  二、百分数和分数、小数的互化

  (一)百分数与小数的互化:

  1、小数化成百分数:把小数点向右移动两位(数位不够用0补足),同时在后面添上百分号。

  2. 百分数化成小数:把小数点向左移动两位(数位不够用0补足),同时去掉百分号。

  (二)百分数的和分数的互化

  1、百分数化成分数:先把百分数改写成分母是100的分数,能约分要约成最简分数。

  2、分数化成百分数:

  ① 用分数的基本性质,把分数分母扩大或缩小成分母是100的分数,再写成百分数形式。

  ②先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。(建议用这种方法)

  (三)常见分数小数百分数之间的互化;

  三、用百分数解决问题

  (一)一般应用题

  1、常见的百分率的计算方法:

  一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。

  求一个数是另一个数的百分之几用一个数除以另一个数,结果写为百分数形式。

  3、已知单位“1”的量(用乘法),求单位“1”的百分之几是多少的问题,数量关系式和分数乘法解决问题中的关系式相同:

  (1)百分率前是“的”: 单位“1”的量×百分率=百分率对应量

  (2百分率前是“多或少”的数量关系:

  单位“1”的量×(1±百分率)=百分率对应量

  4、未知单位“1”的量(用除法),已知单位“1”的百分之几是多少,求单位“1”。 方法与分数的方法相同。

  解法: (1)方程: 根据数量关系式设未知量为X,用方程解答。

  (2)算术(用除法): 百分率对应量÷对应百分率 = 单位“1”的量

  5、求一个数比另一个数多(少)百分之几的方法与分数的方法相同。只是结果要写为百分数形式。看百分率前有没有比多或比少的问题;

  百分率前是“多或少”的关系式:

  (比单位“1”少):具体量÷ (1-百分率)= 单位“1”

  (比单位“1”多):具体量÷(1+百分率)=单位“1”

  6、求一个数比另一个数多百分之几的方法:方法与分数的方法相同。

  用两个数的相差量÷单位“1”的量 =百分之几

  即①求一个数比另一个数多百分之几:用(大数–小数) ÷另一个数(比那个数就除以那个数),结果写为百分数形式。

  ②求一个数比另一个数少几分之几:用(大数–小数) ÷另一个数(比那个数就除以那个数),结果写为百分数形式。

  第七单元:扇形统计图

  一、扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间的关系。也就是各部分数量占总数的百分比(因此也叫百分比图)。

  二、常用统计图的优点:

  1、条形统计图:可以清楚的看出各种数量的多少。

  2、折线统计图:不仅可以看出各种数量的多少,还可以清晰看出数量的增减变化情况。

  3、扇形统计图:能够清楚的反映出各部分数量同总数之间的关系。(要在统计图上写出百分率)

  三、扇形的面积大小:在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关,圆心角越大,扇形越大。(因此扇形面积占圆面积的百分比,同时也是该扇形圆心角度数占圆周角度数的百分比。)

  四、应用:1.会观察统计图。

  2、你得到什么数学信息?

  回答①、***占总体的百分之几;

  ②、**占的百分比最多,**占的百分比最少;

  你还能提什么数学问题:**和**一共占百分之几。

  数学广角:数与形

  每幅图的圆点总数都可以看作是两个相同的数相乘的积,这些算式还可以用平方数的形式来表示。 1+3=22 1+3+5=32 1+3+5+7=42  得出:从1起连续奇数的和等于奇数个数的平方。

  从2起连续偶数的和等于偶数个数的平方加偶数个数(即(n2+n),或等于偶数个数乘比偶数个数大1的数即n×(n+1)。

  补充内容(位置)

  我们用数对(数对:由两个数组成,中间用逗号隔开,用括号括起来。括号里面的数由左至右为列数和行数,即“先列后行”)确定点的位置。如数对(3,5)表示:(第三列,第五行)

  竖排叫列(从左往右看)横排叫行(从前往后看),先数列再数行。X k B 1 . c o m

  2、平移时用“上”、“下”、“前”、“后”、“左”、“右”来表述,平移时图形的现状不变。

  3、图形左、右平移: 行不变 ;图形上、下平移: 列不变

  举报/反馈