2022年传统企业如何做数字化转型?
有个话题,说现在这个时代,如果不做数字化转型的传统企业就会在十年内消失,当然这个结论有点夸张,那什么是数字化转型,怎么才能完成数字化转型呢?本文就来讲讲。
全文2700字,读完需要7分钟。
数字化转型就是利用数字化技术(如大数据、云计算、人工智能等)来推动企业组织转变业务模式,组织架构,企业文化等的变革措施,如衍生出的智能制造、智慧城市等概念。
数字化转型是个和大数据一样,是个有点大有点虚的概念,映射到直接落地,相对接地气的概念就是数据化管理,也是当下很多企业正在实施的措施。
诸如企业的财务、销售、市场等业务自身就带有强烈的数据分析需求,领导也厌倦了查看一沓沓报表,更希望看到结论化的数据。如果说运用到个人或是某一个问题的叫数据分析,那么投入到企业的业务层面用于辅助管理产生效益的则可称为数据化管理。
回顾若干年前,企业做信息化总结起来就是实施ERP系统,财务系统,人力资源系统,客户关系管理(CRM)系统等等。这些信息化的项目有一个共同特点,就是把企业的组织架构,业务流程,运营模式等通过软件系统的形式固化下来,这样企业相关的员工,物料,设备,资金等要素就围绕固化好的软件系统运转。如果企业管理人员发现现有软件系统不适用现在的业务,就会实施流程变革等措施来优化现有的软件系统,所以信息化更多的是支持业务。
企业实施信息化后,企业相关的人,物料,设备,资金等要素就围绕固化好的软件系统运转,但是这些要素在企业日常运营过程中实际运行情况是怎样的,企业并不十分清楚,企业并没有一个系统能实时抓取并可视化企业日常运营全景,比如客户购买企业的产品和服务后的使用情况、市场的变化情况、工厂流水线的运行情况、供应链的运转情况等。如果需要这些数据,大都需要通过人力来统计,做各种报表,费时费力,且不一定能保证数据的准确性。
数字(据)化就是要通过收集企业日常运营的数据,客户使用产品服务的数据,市场行业,趋势等等数据,形成企业日常运营的全景图,反映到产品研发、服务流程改善、精准营销、销售模式升级、优化库存等业务的改进上来。
呼声最大的是生产制造业,所以以下很多都倾向于生产制造业的业务情况:
1、第一阶段:数据连接、采集、整理
数据是数字化的基础,数字化转型的第一步往往都是先进行数据连接。要分析什么业务,分析的指标有哪些,需要的数据有哪些,当下已有哪些数据,哪些数据不足需要定向收集。
比如:
·生产可以通过传感器等设备收集生产环节的数据。
·库存可用过扫码等手段来收集,以及后续物流运输数据。
·销售可以通过改进业务流程,设置数据采集环节来收集数据。
·营销可以通过网站的埋点来收集用户的行为数据。
数据采集的成本比较高,而且往往大动干戈。建议先做好数字化路线和场景的规划,尽量自顶而下推导到底需要哪些数据及其采集技术,往往数据采集的难点不在于技术层面,而在于业务层面的推动。
采集到数据还只是第一步,后续需要有大量的工作保证数据质量,数据有问题分析再严谨都是空谈。建议在数字化规划阶段,需要对全数据链路进行详细设计,争取做到几个要点:
①多个系统相联通,至少保证同一种数据在不同系统中是一致的;
②通过数据链路设计使得相邻环节的数据可相互校验;
③数据质量需融入日常运营管理流程。
然后是数据整合。采集到的数据往往都分布在各业务系统内,但后续分析的时候往往会涉及多种业务的数据,比如财务+销售,所以系统之间的数据壁垒要打通,避免数据孤岛。
系统来看,就是从数据分析出发,向上要保证数据口径的统一,避免数据对不上。向下要以分析为目的来搭建数仓和数据中心,让数据整合—数据清洗—数据分析—可视化都在一个平台上进行
在这个过程通常需要借助BI平台、数仓来搭建。
有些数据体量大的企业会搭建大数据平台。
2、第二阶段:数据分析及可视化
数据连接完成后,下一步是基于业务需求分析和可视化展示。分析分为历史和当下数据按指标、业务归类展示,生成报表、可视化报告。涉及到具体问题比方说找到带来80%营收的20%家优质代理商,则需要数据挖掘技术来追踪定位。
数字化成熟到一定程度,各个业务都应该有相应的可视化模块,运用商务智能BI系统或制造智能MI系统,这是企业实现数字可视化的重要工具。
3、第三阶段:精益分析
在第一阶段和第二阶段推进一段时间之后,企业多数已经具备自动化和信息化的基础,往往这时候企业会开始思考:“我有这么多数据,能看到这么多报表,我怎么提升效率降低成本呢?”因此,进入数字化转型的第三阶段精益分析。
传统企业在推行精益/工业工程方法和工具时,工业工程师或咨询师一般通过现场诊断分析来发现企业生产运营管理的问题,并指导企业持续改善的路线。
绝大部分生产制造企业在精益化方面相对落后,而精益分析的阶段需要企业利用数字化软硬件技术和工具,来固化、简化并优化精益化的过程,将原来经验驱动的现场诊断,逐步转化并结合实时数据驱动的数字化诊断,更客观、更及时、更全面、更智能地去发现企业生产系统中存在的浪费和问题,这也是智能制造中所谓“智能”的第一小步。
4、第四阶段:高阶分析
基于第三阶段精益分析的成果,企业及其管理者被赋能,能够更简单、更准确、更及时地发现企业的生产运营问题后,就面临到如何分析问题产生原因并且提供问题解决方案的挑战。
这时候就该是大数据和人工智能技术的用武之地,通过机器学习等技术对最佳历史实践进行提炼并预测,通过APS等技术为企业的计划排程提供智能决策,通过知识图谱等技术构建企业的知识库,通过计算机视觉听觉等技术替代现场枯燥无聊的重复劳动工位等。
针对于每一种行业、每一道工艺、每一个流程节点,都可能有一些工业应用场景需要大数据和人工智能技术,来辅助管理人员进行快速决策,乃至解放管理人员进行自动决策,从而真正实现企业智能制造,是为高阶分析。
5、第五阶段:全面转型
当企业推进内部的智能高阶分析至一定阶段之后,必然需要与全供应链的其他智能企业进行连接,实现智能化的全面转型。
最后,啰嗦几句
1.落地是从一到五,设计是从五到一。
2.软硬件全买最好的,不如用精益方法先把整个流程撸通,然后逐步迭代升级(可借鉴IT行业的敏捷开发模式),在技术发展太快的今天,除非你能像换iPhone一样换你的数字化系统,不然总有更好的版本,更好的产品。
3.一次性把数据采集全了,不如挑一、两个典型工业应用场景(痛点)直接从第一阶段干到第三、四阶段。
4.智能制造、工业4.0、人工智能、大数据、物联网、MES等都是概念,往往每个人对同一个概念的理解都不完全相同,不如简化一下思路,这么想:我想要哪些数据,能帮我把哪里管得更好。