数学手抄报内容三年级(热门7篇)

  数学手抄报内容三年级(1)

  假设你在参加一个由50人组成的婚礼,有人或许会问:“我想知道这里两个人的生日一样的概率是多少?此处的一样指的是同一天生日,如5月5日,并非指出生时间完全相同。”

  也许大部分人都认为这个概率非常小,他们可能会设法进行计算,猜想这个概率可能是七分之一。然而正确答案是,大约有两名生日是同一天的客人参加这个婚礼。如果这群人的生日均匀地分布在日历的任何时候,两个人拥有相同生日的概率是97%。换句话说就是,你必须参加30场这种规模的聚会,才能发现一场没有宾客出生日期相同的聚会。

  人们对此感到吃惊的原因之一是,他们对两个特定的'人拥有相同的出生时间和任意两个人拥有相同生日的概率问题感到困惑不解。两个特定的人拥有相同出生时间的概率是三百六十五分之一。回答这个问题的关键是该群体的大小。随着人数增加,两个人拥有相同生日的概率会更高。因此在10人一组的团队中,两个人拥有相同生日的概率大约是12%。在50人的聚会中,这个概率大约是97%。然而,只有人数升至366人(其中有一人可能在2月29日出生)时,你才能确定这个群体中一定有两个人的生日是同一天。

  数学手抄报内容三年级(2)

  有一次,他跟邻居家的孩子一起出城去玩,他们走着走着;忽然看见路旁有座荒坟,坟旁有许多石人、石马。这立刻引起了华罗庚的好奇心,他非常想去看个究竟。于是他就对邻居家的孩子说:

  “那边可能有好玩的,我们过去看看好吗?”

  邻居家的孩子回答道:“好吧,但只能呆一会儿,我有点害怕。”

  胆大的华罗庚笑着说:“不用怕,世间是没有鬼的。”说完,他首先向荒坟跑去。

  两个孩子来到坟前,仔细端详着那些石人、石马,用手摸摸这儿,摸摸那儿,觉得非常有趣。爱动脑筋的华罗庚突然问邻居家的孩子:“这些石人、石马各有多重?”

  邻居家的孩子迷惑地望着他说:"我怎么能知道呢?你怎么会问出这样的傻问题,难怪人家都叫你‘罗呆子’。”

  华罗庚很不甘心地说道:“能否想出一种办法来计算一下呢?”

  邻居家的孩子听到这话大笑起来,说道:“等你将来当了数学家再考虑这个问题吧!不过你要是能当上数学家,恐怕就要日出西山了。”

  华罗庚不顾邻家孩子的嘲笑,坚定地说:“以后我一定能想出办法来的。”

  当然,计算出这些石人、石马的重量,对于后来果真成为数学家的华罗庚来讲,根本不在话下。

  金坛县城东青龙山上有座庙,每年都要在那里举行庙会。少年华罗庚是个喜爱凑热闹的人,凡是有热闹的地方都少不了他。有一年华罗庚也同大人们一起赶庙会,一个热闹场面吸引了他,只见一匹高头大马从青龙山向城里走来,马上坐着头插羽毛、身穿花袍的“菩萨”。每到之处,路上的老百姓纳头便拜,非常虔诚。拜后,他们向“菩萨”身前的小罐里投入钱,就可以问神问卦,求医求子了。

  华罗庚感到好笑,他自己却不跪不拜“菩萨”。站在旁边的大人见后很生气,训斥道:

  “孩子,你为什么不拜,这菩萨可灵了。”

  “菩萨真有那么灵吗?”华罗庚问道。

  一个人说道:“那当然,看你小小年纪千万不要冒犯了神灵,否则,你就会倒楣的。”

  “菩萨真的万能吗?”这个问题在华罗庚心中盘旋着。他不相信一尊泥菩萨真能救苦救难。

  庙会散了,看热闹的老百姓都回家了。而华罗庚却远远地跟踪着“菩萨”。看到“菩萨”进了青龙山庙里,小华罗庚急忙跑过去,趴在门缝向里面看。只见 “菩萨”能动了,他从马上下来,脱去身上的花衣服,又顺手抹去脸上的妆束。门外的华庚惊呆了,原来百姓们顶礼膜拜的“菩萨”竟是一村民装扮的。

  华罗庚终于解开了心中的疑团,他将“菩萨”骗人的事告诉了村子里的每个人,人们终于恍然大悟了。

  数学手抄报内容三年级(3)

  1. 把一个合数分解质因数,通常用短除法。先用能整除这个合数的质数去除,一直除到商是质数为止,再把除数和商写成连乘的形式。

  2. 求几个数的最大公约数的方法是:先用这几个数的公约数连续去除,一直除到所得的商只有公约数1为止,然后把所有的除数连乘求积,这个积就是这几个数的的最大公约数。

  3. 求几个数的最小公倍数的方法是:先用这几个数(或其中的部分数)的公约数去除,一直除到互质(或两两互质)为止,然后把所有的除数和商连乘求积,这个积就是这几个数的`最小公倍数。

  4. 成为互质关系的两个数:1和任何自然数互质 ; 相邻的两个自然数互质; 当合数不是质数的倍数时,这个合数和这个质数互质;两个合数的公约数只有1时,这两个合数互质。

  数学手抄报内容三年级(4)

  华罗庚出生于江苏省,从小喜欢数学,而且非常聪明。1930年,19岁的华罗庚到清华大学读书。

  华罗庚在清华四年中,在熊庆来教授的指导下,刻苦学习,一连发表了十几篇论文,后来又被派到英国留学,获得博士学位。他对数论有很深的研究,得出了著名的华氏定理。他特别注意理论联系实际,走遍了20多个省、市、自治区,动员群众把优选法用于农业生产。

  记者在一次采访时问他:“你最大的愿望是什么?”

  他不加思索地回答:“工作到最后一天。”他的确为科学辛劳工作的最后一天,实现了自己的诺言。

  数学手抄报内容三年级(5)

  名人故事:“数学王子”陈景润

  陈景润一个家喻户晓的数学家,在攻克歌德巴赫猜想方面作出了重大贡献,创立了着名的“陈氏定理”,所以有许多人亲切地称他为“数学王子”。但有谁会想到,他的成就源于一个故事。

  1937年,勤奋的陈景润考上了福州英华书院,此时正值抗日战争时期,清华大学航空工程系主任留英博士沈元教授回福建奔丧,不想因战事被滞留家乡。几所大学得知消息,都想邀请沈教授前进去讲学,他谢绝了邀请。由于他是英华的校友,为了报达母校,他来到了这所中学为同学们讲授数学课。一天,沈元老师在数学课上给大家讲了一故事:“200年前有个法国人发现了一个有趣的现象:6=3+3,8=5+3,10=5+5,12=5+7,28=5+23,100=11+89。每个大于4的偶数都可以表示为两个奇数之和。因为这个结论没有得到证明,所以还是一个猜想。大数学欧拉说过:虽然我不能证明它,但是我确信这个结论是正确的。

  它像一个美丽的光环,在我们不远的前方闪耀着眩目的光辉。……”陈景润瞪着眼睛,听得入神。

  因此,陈景润对这个奇妙问题产生了浓厚的兴趣。课余时间他最爱到图书馆,不仅读了中学辅导书,这些大学的数理化课程教材他也如饥似渴地阅读。因此获得了“书呆子”的雅号。

  兴趣是第一老师。正是这样的数学故事,引发了陈景润的兴趣,引发了他的勤奋,从而引发了一位伟大的数学家。

  数学手抄报内容三年级(6)

  钱钟书是我国著名的大作家,也是一位学贯中西的大学者。

  1929年夏,钱钟书高中毕业,报考当时的全国最高学府----清华大学,就在入学考试时,钱钟书拿到数学试卷,一道道数学题看起来像天书一样,他几乎都不会做,但迫不得已,就硬着头皮做了几道题,也不知对错。

  发榜的时候,钱钟书看到自己的数学只考了15分。而按照清华大学的招生规定,只要有一门课程不及格,就不予录取。他的数学考得这么差,应当说是一点儿希望都没有了。可是他的国文和英文成绩都是满分,当时的校长罗家伦看到钱钟书的英文、中文成绩俱佳,高出一般考生一大截,就决定打破常规,破格录取。

  正是罗家伦的这一次破例,成就了学贯中西的一代学者。

  数学手抄报内容三年级(7)

  小学三年级数学手抄报内容资料

  对于数学的奥秘可以存在宇宙的任何一个地方,俨然,数学是我们人类探知未来的不可缺少的学科。下面是小编收集整理的,欢迎阅读参考~

  小学三年级数学手抄报图片1

  小学三年级数学手抄报图片2

  小学三年级数学手抄报图片3

  小学三年级数学手抄报图片4

  小学三年级数学手抄报图片5

  一、数学简单故事和感悟】

  故事一:烧水的问题

  有好事者提出这样一个问题:“假如你面前有煤气灶、水龙头、水壶和火柴,你想烧些水应当怎样去做?”

  被提问者答道:“在壶中放上水,点燃煤气,再把水壶放到煤气灶上。”

  提问者肯定了这一回答,接着追问:“如其他条件不变,只是水壶中已有了足够的水,那你又应当怎样去做? ”

  这时被提问者很有信心地答道:“点燃煤气,再把水壶放到煤气灶上。”

  但是提问者说:“物理学家通常都这么做,而数学家们则会倒去壶中的水,并声称已把后一问题转化成先前的问题。”

  感悟:

  数学家“倒去壶中的水”似乎是多此一举,故事的编创者不是要我们去“倒去壶中的水”,而是引导我们感悟数学家独特的思维方式──转化。

  学习数学不是问题解决方案的累积记忆,而是要学会把未知的问题转化成已知的问题,把复杂的问题转化成简单的问题,把抽象的问题转化成具体的问题。数学的转化思想简化了我们的思维状态,提升了我们的思维品质。转化不是就事论事、一事一策,而是发掘出问题中最本质的内核和原型,再把新问题转化成与已经能够解决的问题。

  转化思想是数学的基本思想,它应贯穿在我们数学教学的始终。

  故事二:两只羊的描述

  草地上有两只羊,在艺术家、生物学家、物理学家、数学家看来却有不同的感受与理解,下面是他们的的描述。

  艺术家:“蓝天、碧水、绿草、白羊,美哉自然。”

  生物学家:“雄雌一对,生生不息。”

  物理学家:“大羊静卧,小羊漫步。”

  数学家:“1+1=2。”

  感悟:

  从故事中不同职业的人对两只羊的描述,我们感受到艺术家对自然美的关注,生物学家对生命的关注,物理学家对运动与静止的关注,而数学家从色彩、性别、状态中抽象出数量关系:1+1=2,这是数学高度抽象性的体现。

  在数学教学中,学生的数学学习要经历具体—表象—抽象的过程,教学时要在直观物体和抽象概念之间构建桥梁,从而引导学生把握事物最主要、最本质的数学属性。

  抽象有一个学生经历的过程,而不是直接告诉学生抽象的`结果。数学抽象本身又是一个不断提高的过程,这一过程永无止境。

  二、数学名言

  上帝总在使世界几何化。

  ——柏拉图

  数学是唯一好的形而上学。

  ——开尔文

  对外部世界进行研究的主要目的在于发现上帝赋予它的合理次序与和谐,而这些是上帝以数学语言透露给我们的。

  ——开普勒

  数可以说成是统治整个量的世界,而算术的四则可以被认为是作为数学家的完全的装备。

  ——麦斯韦

  整个数学所涵括的,正是组织起一系列协助我们思考过程中补助想象的工具。

  ——怀特海

  自然这一巨著是用数学符号写成的。

  ——伽里略

  纯粹数学,就其本质而言,是逻辑思想的诗篇。

  ——爱因斯坦

  算术是人类知识中一个最古老的分支,或许是最最古老的分支;然而它的一些最深奥的秘密,接近于它平凡的真理。

  ——史密夫(HenryJohnSmith1826-1883)

  宇宙的伟大建筑师现在开始以纯粹数学家的身份出现。

  ——吉恩斯

  数学的本质是对表面上看来完全不同的概念认识其内在的逻辑关系。最成功的数学家是知识面最宽、概念的类比、想象能力最强的人

  ——爱德华

  别把数学想象为硬梆梆的、死绞蛮缠的、令人讨厌的、有悖于常识的东西,它只不过是赋予常识以灵性的东西

  ——开尔文

  数学的魅力在于它是很有趣的学科。

  ——帕克特

  严密性对于数学的净化起着决定性的作用。

  ——波士顿(TimPoston)

  数学的严密性如同衣服。其式样应该适时,无论是太松或是太紧,它都将使得活动起来不太舒适,也不太方便。

  ——西蒙斯(G.F.Simmons)

  一个数学真理本身既不简单也不复杂,它就是它。

  ——埃米尔

  任何一门数学分支,不管它如何抽象,总有一天会在现实世界中找到应用。

  ——罗巴切夫斯基

  使数学脱离实际需要,就好比把母牛关起来不让她接触公牛.

  ——切比雪夫

  在大多数学科里,一代人的建筑往往被另一代人所摧毁,一个人的创造被另一个人所破坏;唯独数学,每一代人都在古老的大厦上添加一层楼。

  三、快速记住公式的六个方法

  记忆是知识的仓库,学过的知识记得牢,积累的知识就丰富,而丰富知识的积累将为创造型人才的培养奠定坚实的基础。怎样才能提高学生记忆数学知识点的效果呢?下面培优教育的老师介绍几种方法:

  1、归类记忆法

  就是根据识记材料的性质、特征及其内在联系,进行归纳分类,以便帮助学生记忆大量的知识。比如,学完计量单位后,可以把学过的所有内容归纳为五类:长度单位;面积单位;体积和容积单位;重量单位;时间单位。这样归类,能够把纷纭复杂的事物系统化、条理化,易于记忆。

  2、歌诀记忆法

  就是把要记忆的数学知识编成歌谣、口诀或顺口溜,从而便于记忆。比如,量角的方法,就可编出这样几句歌诀:“量角器放角上,中心对准顶点,零线对着一边,另一边看度数。采用这种方法来记忆,学生不仅喜欢记,而且记得牢。

  3、规律记忆法

  即根据事物的内在联系,找出规律性的东西来进行记忆。比如,识记长度单位、面积单位、体积单位的化法和聚法。化法和聚法是互逆联系,即高级单位的数值 ×进率=低级单位的数值,低级单位的数值÷进率=高级单位的数值。掌握了这两条规律,化聚问题就迎刃而解了。

  4、列表记忆法

  就是把某些容易混淆的识记材料列成表格,达到记忆之目的。这种方法具有明显性、直观性和对比性。比如,要识记质数、质因数、互质数这三个概念的区别,就可列成表来帮助学生记忆。

  5、重点记忆法

  随着年龄的增长,所学的数学知识也越来越多,学生要想全面记住,既浪费时间且记忆效果不佳。因此,要让学生学会记忆重点内容,学生在记住了重点内容的基础上,再通过推导、联想等方法便可记住其他内容了。比如,学习常见的数量关系:工作效率×工作时间=工作量。工作量÷工作效率=工作时间;工作量+工作时间=工作效率。这三者关系中只要记住了第一个数量关系,后面两个数量关系就可根据乘法和除法的关系推导出来。这样就减轻了学生记忆的负担,提高了记忆的效率。

  6、联想记忆法

  就是通过一件熟悉的事物想到与它有联系的另一件事物来进行记忆。