小学奥数丨思维训练法+知识点及重要公式总结+练习题,让孩子提高成绩!
原标题:小学奥数丨思维训练法+知识点及重要公式总结+练习题,让孩子提高成绩!
家长慧”
▼▼▼
家长慧近期针对中小学生推出各类学习工具,点击菜单可以进入国家免费学习课程、翻译工具等,欢迎大家体验。(如上图)
很多学生反映数学复杂难懂,其实数学学习不是要死记硬背,而是要掌握方法。数学思维的训练需要一套完成的训练方法,经过思维的训练,数学成绩一定可以大大提高。
今天就来教你4招:
1
转化型
这是解决问题遇到障碍,受阻时把问题由一种形式转换成另一种形式,使问题变得更简单、更清楚,以利解决的思维形式。在教学中,通过该项训练,可以大幅度地提高学生解题能力。
2
系统型
这是把事物或问题作为一个系统从不同的层次或不同的角度去考虑的高级整体思维形式。在高年级除结合综合应用题以外还可编制许多智力训练题来培养学生系统思维能力。
3
激化型
这是一种跳跃性、活泼性、转移性很强的思维形式。教师可通过速问速答来训练练学生。
如问:3 个5 相加是多少?学生答:5+5+5=15 或5×3=15。教师又问:3 个5 相乘是多少?学生答:5×5×5=125。紧接着问:3 与5 相乘是多少?学生 答:3×5=15,或5×3=15。通过这样的速问速答的训练,发现学生思维越来越活跃,越来越灵活,越来越准确。
4
类比型
这是一种对并列事物相似性的同实质进行识别的思维形式。这项训练可以培养学生思维的准确性。如:
①金湖粮店运来大米6吨。比运来的面粉少1/4吨、运来面粉多少吨?
②金湖粮店运来大米6吨,比运来的面粉少1/4,运来面粉多少吨?
以上两题,虽然相似,实质不同,一字之差,解法全异,可以点拨学生自己辨析。通过训练,学生今后碰到类似的问题便会仔细推敲,这样就大大地提高了解题的准确性。
1.反向行程问题公式
反向行程问题可以分为“相遇问题”(二人从两地出发,相向而行)和“相离问题”(两人背向而行)两种。这两种题,都可用下面的公式解答:
(速度和)×相遇(离)时间=相遇(离)路程;
相遇(离)路程÷(速度和)=相遇(离)时间;
相遇(离)路程÷相遇(离)时间=速度和。
2.列车过桥问题公式
(桥长+列车长)÷速度=过桥时间;
(桥长+列车长)÷过桥时间=速度;
速度×过桥时间=桥、车长度之和。
3.行船问题公式
(1)一般公式:
静水速度(船速)+水流速度(水速)=顺水速度;
船速-水速=逆水速度;
(顺水速度+逆水速度)÷2=船速;
(顺水速度-逆水速度)÷2=水速。
(2)两船相向航行的公式:
甲船顺水速度+乙船逆水速度=甲船静水速度+乙船静水速度
(3)两船同向航行的公式:
后(前)船静水速度-前(后)船静水速度=两船距离缩小(拉大)速度。
(求出两船距离缩小或拉大速度后,再按上面有关的公式去解答题目)。
4.相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
5.盈亏问题公式
(1)一次有余(盈),一次不够(亏),可用公式:
(盈+亏)÷(两次每人分配数的差)=人数。
例如,“小朋友分桃子,每人10个少9个,每人8个多7个。问:有多少个小朋友和多少个桃子?”
解(7+9)÷(10-8)=16÷2=8(个)………………人数
10×8-9=80-9=71(个)………………………桃子
或8×8+7=64+7=71(个)(答略)
(2)两次都有余(盈),可用公式:
(大盈-小盈)÷(两次每人分配数的差)=人数。
例如,“士兵背子弹作行军训练,每人背45发,多680发;若每人背50发,则还多200发。问:有士兵多少人?有子弹多少发?”
解:(680-200)÷(50-45)=480÷5=96(人)
45×96+680=5000(发)或50×96+200=5000(发)(答略)
(3)两次都不够(亏),可用公式:
(大亏-小亏)÷(两次每人分配数的差)=人数。
例如,“将一批本子发给学生,每人发10本,差90本;若每人发8本,则仍差8本。有多少学生和多少本本子?”
解(90-8)÷(10-8)=82÷2=41(人)
10×41-90=320(本)(答略)
(4)一次不够(亏),另一次刚好分完,可用公式:
亏÷(两次每人分配数的差)=人数。
(例略)
(5)一次有余(盈),另一次刚好分完,可用公式:
盈÷(两次每人分配数的差)=人数。
(例略)
6.植树问题:
1、非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距+1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2、封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
7.和差问题的公式
(和+差)÷2=大数
(和-差)÷2=小数
8.和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者和-小数=大数)
9.差倍问题
差÷(倍数+1)=大数
小数×倍数=大数
(或小数+差=大数)
10.平均数问题公式
总数量÷总份数=平均数。
数量关系式:
1.每份数×份数=总数总数÷每份数=份数总数÷份数=每份数
2. 1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数
3.速度×时间=路程路程÷速度=时间路程÷时间=速度
4.单价×数量=总价总价÷单价=数量总价÷数量=单价
5.工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率
6.加数+加数=和和-一个加数=另一个加数
7.被减数-减数=差被减数-差=减数差+减数=被减数
8.因数×因数=积积÷一个因数=另一个因数
9.被除数÷除数=商被除数÷商=除数商×除数=被除数
11.一般行程问题公式
平均速度×时间=路程;
路程÷时间=平均速度;
路程÷平均速度=时间。
12.反向行程问题公式
反向行程问题可以分为“相遇问题”(二人从两地出发,相向而行)和“相离问题”(两人背向而行)两种。这两种题,都可用下面的公式解答:
(速度和)×相遇(离)时间=相遇(离)路程;
相遇(离)路程÷(速度和)=相遇(离)时间;
相遇(离)路程÷相遇(离)时间=速度和。
13.同向行程问题公式
同时相向而行:路程=速度和×时间
同时相向而行:相遇时间=速度和×时间
同时同向而行(速度慢的在前,快的在后):追及时间=路程速度差。
同时同地同向而行(速度慢的在后,快的在前):路程=速度差×时间。
14.鸡兔问题公式
(1)已知总头数和总脚数,求鸡、兔各多少:
(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;
总头数-兔数=鸡数。
或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;
总头数-鸡数=兔数。
例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”
解一(100-2×36)÷(4-2)=14(只)………兔;
36-14=22(只)……………………………鸡。
解二(4×36-100)÷(4-2)=22(只)………鸡;
36-22=14(只)…………………………兔。
(答略)
(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式
(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;
总头数-兔数=鸡数
或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;
总头数-鸡数=兔数。(例略)
(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。
(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;
总头数-兔数=鸡数。
或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;
总头数-鸡数=兔数。(例略)
(4)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:
(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。
例如,“灯泡厂生产灯泡的工人,按得分的多少给工资。每生产一个合格品记4分,每生产一个不合格品不仅不记分,还要扣除15分。某工人生产了1000只灯泡,共得3525分,问其中有多少个灯泡不合格?”
解一(4×1000-3525)÷(4+15)
=475÷19=25(个)
解二1000-(15×1000+3525)÷(4+15)
=1000-18525÷19
=1000-975=25(个)(答略)
(“得失问题”也称“运玻璃器皿问题”,运到完好无损者每只给运费××元,破损者不仅不给运费,还需要赔成本××元……。它的解法显然可套用上述公式。)
(5)鸡兔互换问题(已知总脚数及鸡兔互换后总脚数,求鸡兔各多少的问题),可用下面的公式:
〔(两次总脚数之和)÷(每只鸡兔脚数和)+(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=鸡数;
〔(两次总脚数之和)÷(每只鸡兔脚数之和)-(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=兔数。
例如,“有一些鸡和兔,共有脚44只,若将鸡数与兔数互换,则共有脚52只。鸡兔各是多少只?”
解〔(52+44)÷(4+2)+(52-44)÷(4-2)〕÷2
=20÷2=10(只)……………………………鸡
〔(52+44)÷(4+2)-(52-44)÷(4-2)〕÷2
=12÷2=6(只)…………………………兔(答略)
练习题
1、父亲和儿子今年共有60岁,又知4年前,父亲的年龄正好是儿子的3倍,儿子今年是多少岁?
分析与解答:4年前,父子的年龄和是:60-4×2=52岁,4年前儿子的岁数为52÷(1+3)=13岁,那么儿子今年的岁数是13+9=17岁。
2、快车与慢车从甲乙两地相对开出,如果慢车先开2小时,两车相遇时慢车超过中点24千米,若快车先开出2小时,相遇时离中点72千米处,如果同时开出,4小时可以相遇,快车比慢车每小时多行多少千米?
分析与解答:设全程的一半为x,两次行驶中快车行驶的路程为:x+72+x-24=2x-48,慢车行驶的路程为:x+24+x-72=2x-48,快车比慢车多行驶的路程:2x+48-(2x-48)=96千米,把两次行驶可以看作两车同时出发行驶全程,则时间是4×2=8小时,那么快车比慢车每小时多行的千米数为96÷8=12千米。
3、有三堆棋子,每堆棋子数一样多,并且都只有黑白两色,第一堆的黑子数和第二堆里的白子数一样多,第三堆的黑子占全部黑子的 ,把这三堆棋子集中在一起,白子占全部棋子数的几分之几?
分析与解答:第三堆黑子占全部黑子的,那么,第一、二堆里的黑子占全部黑子的,又因为第一堆里黑子数和第二堆里的白子数相同,则第一、二堆里的黑子数正好等于第一堆棋子数,把每堆棋子数看作3,三堆棋子总数则是9,黑子有5份,那么白子有9-5=4份,所以白子占全部棋子数的。
4、早晨8时多钟,有甲、乙两辆汽车先后从化肥厂开往县城,两车的速度都是每小时行驶48千米,8时32分,甲车离化肥厂的距离是乙车离化肥厂距离的5倍,到了8时44分,甲车离化肥厂的距离恰好是乙车离化肥厂距离的2倍,那么甲车是8时几分由化肥厂开出的?
分析与解答:12÷3×(3+5)=32分钟,8:44-32分=8:12分,故甲车是8时12分由化肥厂开出的。
5、有60个不同的约数的最小自然数是多少?
分析与解答:60=2×2×3×5=(1+1)×(1+2)×(2+1)×(4+1),这个自然数最小是29×32×5×7=5040
6、1!+2!+3!+……+100!的个位数字是( )
分析与解答:1!=1 2!=2 3!=6 4!=24 ,而5!6!7!……100!的个位数字全是0,1+2+6+4=13,所以1!+2!+3!+……+100!的个位数字是3
7、一间屋子里有1小学数学思维训练题00盏灯排成一行,按从左到右的顺序编上号1、2、3、4、5……99、100,每盏灯都有一个开关,开始全都关着,把100个学生排在后面,第1个学生把1的倍数的灯全都拉一下,第2个同学把2的倍数的灯全都拉一下……第100个学生把100的倍数的灯都拉一下,这时有多少盏灯是开着的?
分析与解答:一盏灯被拉的次数是奇数,则灯是开着的,被拉的次数是偶数次,则灯是关着的,在1至100中,只有10个完全平方数的约数的个数是奇数个,其余的约数都是偶数个,所以有10盏灯是开着的,即12、22、32、42、52、62、72、82、92、102
8、一游客划着小船逆流而上,船上一只皮球掉入河里,2分钟后游客发现,立即掉头追皮球,问游客几分钟追上皮球?
分析与解答:2分钟游客与皮球的距离为:(球速+游客速度)×2=(水速+船速-水速)×2=2个船速追的时间
2个船速÷(顺速-水速)=2个船速÷船速=2分钟即游客2分钟追上皮球。
9、饲养场的白兔是黑兔的5倍,后来卖掉了10只黑兔,买回来20只白兔,现在白兔的只数是黑兔的7倍,原来白兔、黑兔各有多少只?
分析与解答:卖掉10只黑兔,也应卖掉50只白兔,这样白兔只数正是黑兔的5倍,而现在却买回20只白兔,相关20+50=70只,现在白兔是黑兔的7倍,相关7-5=2倍,一倍差是70÷2=35只,原来黑兔只数为35+10=45只,白兔只数为45×5=225只
10、有四个不同的自然数,这四个数字总和是1001,如果让这四个数的公约数尽可能大,那么,这四个数中最大的一个数是多少?
分析与解答:1001=7×11×13,要使公约数最大,首先考虑它是“11×13”,但“7”不能拆成四个不同的数,再考虑“7×13”,而11=1+2+3+5,所以最大的公约数是7×13=91,不同的四个数分别是91×1,91×2,91×3,91×5,最大的数是91×5=455
11、一种彩电按定价卖出可得利润960元,如果按定价的八折出售,则亏832元,该彩电购入价是多少元?
分析与解答:把定价看作单位“1”,按定价的八折出售,则亏832元,则定价为(960+832)÷(1-80%)=8960元 ,所以购入价为8960-960=8000元
12、有人沿公路前进,对面来了一辆汽车,他问司机:“后面有自行车吗?”
司机答道:“10分钟前我超过一辆自行车”,这人继续走10分钟,遇到自行车,已知自行车速度是步行速度的3倍,汽车速度是步行速度的( )倍
分析与解答:把步行者速度看作1,自行车速度看作3,汽车和自行车同时在A点,人在B点10分钟后,人、汽车相遇在C点,则自行车在10分钟前到达D点,再过10分钟后,人自行车相遇CD的长为(1+3)×10=40,AD的长为3×10=30,AC是汽车10分钟走的路程,AC=AD+CD=40+30=70.
汽车速度为70÷10=7
汽车速度是步行速度的7倍
因篇幅有限,仅展示部分
获取配套完整资料 打印版和更多的小学各年级奥数题及答案电子打印版
请后台回复“1122”获取!
欢迎大家欣赏中小学生的原创作文,给小作者一个点赞鼓励。点击阅读:
原创学生作文:《那一片绿色》 原创学生作文:《童年趣事》 原创学生作文:《校园秋色》 也欢迎中小学生投稿,详情请在家长慧后台回复“投稿”。
▼▼▼
家长慧近期针对中小学生推出各类学习工具,点击菜单可以进入国家免费学习课程、翻译工具等,欢迎大家体验。(如上图)
责任编辑: