同日,南医大、南农大齐发Nature!

  

  “TOP大学来了”小编,12月15日,南京医科大学和南京农业大学分别在Nature发表最新研究成果。

  突破!南医大建校以来首篇Nature

  “TOP大学来了”小编,12月15日,南京医科大学沙家豪教授、郭雪江教授,联合中科院生物物理研究所秦燕研究员作为论文共同通讯作者在全球顶级学术期刊《Nature》上发表了题为“A male germ cell-specific ribosome controls male fertility”的论文 。南京医科大学是本文的第一作者单位。

  “TOP大学来了”统计后发现,本文是南京医科大学建校以来首篇作为第一单位在国际顶级期刊《Nature》上发表论文,实现了零的突破。本文是南京医科大学2022年度第2篇NS正刊。

  

  核糖体是细胞内蛋白质合成的高度精密的分子机器。其主要作用是将信使RNA (mRNA)翻译成机体所需要的蛋白质,即将遗传密码转换为氨基酸序列并从氨基酸单体构建蛋白质聚合物。以往,科学家们普遍认为核糖体就是均质的“翻译机器”,它对mRNA进行无差异的识别和翻译,合成机体所需的全部蛋白质。近年来,越来越多的研究表明真核生物中,核糖体具有异质性。目前,人们对核糖体异质性的精确调控机制知之甚少,核糖体异质性结构基础的研究仍然存在明显的空缺,这需要对核糖体进行系统的结构—功能联合分析。

  

  小鼠各组织和不同发育阶段睾丸取材及质谱分析流程

  针对上述问题,研究人员利用蛋白质组学方法检测证实了核糖体蛋白在不同器官和发育阶段的异质性,雄性生殖细胞具有特化的功能性核糖体。这种特化核糖体具有更宽阔的新生多肽出口通道,有不同于普通核糖体的电荷性质和亲疏水性质。进一步的功能研究,研究人员发现特化核糖体的新生多肽出口通道更适合精子细胞中睾丸特异表达的新生多肽子集的折叠加工,特化核糖体通过赋予多肽子集更高的稳定性来维持正常精子的形成。

  这项研究发现了一个雄性生殖细胞特化的核糖体,该核糖体在精子形成过程中具有特殊的蛋白共翻译折叠功能。此外,本研究更是利用特化核糖体解决了长期以来困惑大家的精子蛋白质如何在其生命周期中保持功能和稳定性的问题。

  

  Ribosome ST 特化新生多肽出口通道作用艺术体现

  南农大最新成果登Nature

  “TOP大学来了”小编,12月15日,南京农业大学陶小荣教授为本文唯一通讯作者在全球顶级学术期刊《Nature》上发表了题为“NLR surveillance of pathogen interference with hormone receptors induces immunity”的论文。南京农业大学是本文的第一单位。 南京农业大学博士生陈静与赵延晓为论文共同第一作者。

  

  全球每年因病毒病造成的作物经济损失超过4000亿元,与其他农作物病害不同,病毒病无法依靠农药进行防治,挖掘、利用植物的抗病基因是防控病毒病最绿色高效的手段。

  一种被称为NLR的抗病基因是植物进化出来的最大的一类抗病基因,在许多病虫害防控中发挥了关键作用。NLR抗病基因是植物免疫系统中的关键执行者,它是植物免疫系统的受体蛋白,负责感知与监控病原微生物的入侵,一旦监测到病原物,NLR免疫受体就迅速启动高效的抗病反应进而杀灭病原物。那么,NLR免疫受体究竟如何识别病原微生物、又是如何激活植物自身免疫系统的呢?这是合理利用抗病基因、实现作物高产稳产的基础,也是植物病理学领域的核心科学问题。

  据资料显示, 负链RNA病毒是危害农作物生产的一类重要植物病毒,番茄斑萎病毒也是其中之一,该病毒每年在全球范围内爆发流行,对辣椒、番茄等几百种植物造成危害。辣椒抗病基因Tsw可有效控制番茄斑萎病毒,该抗病基因在辣椒抗病毒育种上得到广泛应用,Tsw编码一个NLR免疫受体,它通过识别病毒编码的NSs的蛋白诱导对病毒的免疫反应,但是Tsw如何识别病毒NSs蛋白以及如何激活植物免疫通路的机制一直以来未得到揭示。

  Tsw NLR免疫受体监控病毒靶向激素受体诱导植物抗病机制图

  据陶小荣介绍,团队在一次偶然的实验中注意到,辣椒免疫受体Tsw的大小很奇特,其大小是常规免疫受体的两倍。通过三维结构建模和同源比对分析发现,在Tsw中具有一个超大的富含亮氨酸重复序列(LRR)结构域。

  更令人吃惊的是,该LRR结构域竟然与植物激素茉莉酸、生长素和独脚金内酯这三个植物激素受体的LRR结构相似。Tsw NLR免疫受体是通过识别病毒编码的NSs蛋白而诱导抗病反应。

  这促使团队提出了一个大胆的“军备竞赛”的假说:病毒NSs蛋白直接攻击这三个植物激素受体,而Tsw这个免疫受体则进化出类似于植物激素受体的结构域,通过模拟植物激素受体,‘诱骗’病毒效应子NSs,继而监视病毒攻击过程,最终通过激活植物免疫系统实现抗病这一过程。

  陶小荣团队深入研究发现,在植物的防御体系中,茉莉素、生长素等激素信号系统在抵御病毒的侵染中发挥重要作用,其中激素受体是激素信号启动的关键开关。但在日渐激烈的对战中,病毒利用自身的武器“效应子NSs”直接靶向激素受体,进而抑制植物激素介导的抗病反应。

  病毒效应子NSs首先与激素受体上一种名为TCP21的蛋白质结合。这个蛋白质就像锁链,病毒一旦与之结合,就能抑制激素受体的活性,束缚住激素的“手脚”,不让它们去激活激素介导的对病毒的抗性,这样一来,由激素系统激发的免疫通路就陷入了瘫痪。然而,病毒的这一招却并未“致命”,反而诱发了这场植物与病毒攻守之战的 “军备升级”。

  虽然激素介导的这一层免疫系统沦陷,植物另一层免疫系统却在暗中储备兵力——团队发现,植物免疫受体Tsw进化出来模拟植物激素受体的结构域,Tsw模拟激素受体结构域也与TCP21结合,并巧妙利用了病毒蛋白“捆大绳”的特性,在病毒蛋白NSs存在下,Tsw NLR免疫受体与TCP21相对于激素受体与TCP21具有更强的亲和力。

  因此,病毒靶向激素受体的时候,NLR免疫受体Tsw也会感知到这个过程,进而迅速触发免疫。激素介导抗病-病毒攻击激素受体-免疫受体监控病毒,这就是这场军备竞赛的新升级:植物防御-病毒反防御-植物再防御,植物免疫系统最终歼灭了病毒。

  陶小荣介绍,激素介导的抗病是一种基础抗病性,是一种比较弱的抗性。NLR免疫受体蛋白介导的抗病性则是非常强烈持久的抗病,可以有效灭除病原菌。在病毒效应子NSs存在的情况下,植物通过这一机制“选择”了更为强烈的NLR免疫反应,诱敌深入,从而更好地保护自己,这为作物抗病的生产应用提供了广阔前景。

  编辑、审核:大可

  版权声明:本文由“TOP大学来了”综合自“南京医科大学、南京农业大学”,版权归原作者所有,文章转摘只为学术传播,如涉及侵权问题,请联系我们,我们将及时修改或删除。