小学五年级数学思维训练100题(附解析及答案)

  五年级数学思维训练100题

  1. 765×213÷27+765×327÷27

  解:原式=765÷27×(213+327)= 765÷27×540=765×20=15300

  2. (9999+9997+…+9001)-(1+3+…+999)

  解:原式=(9999-999)+(9997-997)+(9995-995)+……+(9001-1)

  =9000+9000+…….+9000 (500个9000)

  =4500000

  3.19981999×19991998-19981998×19991999

  解:(19981998+1)×19991998-19981998×19991999

  =19981998×19991998-19981998×19991999+19991998

  =19991998-19981998

  =10000

  4.(873×477-198)÷(476×874+199)

  解:873×477-198=476×874+199

  因此原式=1

  5.2000×1999-1999×1998+1998×1997-1997×1996+…+2×1

  解:原式=1999×(2000-1998)+1997×(1998-1996)+…

  +3×(4-2)+2×1

  =(1999+1997+…+3+1)×2=2000000。

  6.297+293+289+…+209

  解:(209+297)*23/2=5819

  7.计算:

  解:原式=(3/2)*(4/3)*(5/4)*…*(100/99)*(1/2)*(2/3)*(3/4)*…*(98/99)

  =50*(1/99)=50/99

  8.

  解:原式=(1*2*3)/(2*3*4)=1/4

  9. 有7个数,它们的平均数是18。去掉一个数后,剩下6个数的平均数是19;再去掉一个数后,剩下的5个数的平均数是20。求去掉的两个数的乘积。

  解:7*18-6*19=126-114=12

  6*19-5*20=114-100=14

  去掉的两个数是12和14它们的乘积是12*14=168

  10. 有七个排成一列的数,它们的平均数是 30,前三个数的平均数是28,后五个数的平均数是33。求第三个数。

  解:28×3+33×5-30×7=39。

  11. 有两组数,第一组9个数的和是63,第二组的平均数是11,两个组中所有数的平均数是8。问:第二组有多少个数?

  解:设第二组有x个数,则63+11x=8×(9+x),解得x=3。

  12.小明参加了六次测验,第三、第四次的平均分比前两次的平均分多2分,比后两次的平均分少2分。如果后三次平均分比前三次平均分多3分,那么第四次比第三次多得几分?

  解:第三、四次的成绩和比前两次的成绩和多4分,比后两次的成绩和少4分,推知后两次的成绩和比前两次的成绩和多8分。因为后三次的成绩和比前三次的成绩和多9分,所以第四次比第三次多9-8=1(分)。

  13. 妈妈每4天要去一次副食商店,每 5天要去一次百货商店。妈妈平均每星期去这两个商店几次?(用小数表示)

  解:每20天去9次,9÷20×7=3.15(次)。

  14. 乙、丙两数的平均数与甲数之比是13∶7,求甲、乙、丙三数的平均数与甲数之比。

  解:以甲数为7份,则乙、丙两数共13×2=26(份)

  所以甲乙丙的平均数是(26+7)/3=11(份)

  因此甲乙丙三数的平均数与甲数之比是11:7。

  15. 五年级同学参加校办工厂糊纸盒劳动,平均每人糊了76个。已知每人至少糊了70个,并且其中有一个同学糊了88个,如果不把这个同学计算在内,那么平均每人糊74个。糊得最快的同学最多糊了多少个?

  解:当把糊了88个纸盒的同学计算在内时,因为他比其余同学的平均数多88-74=14(个),而使大家的平均数增加了76-74=2(个),说明总人数是14÷2=7(人)。因此糊得最快的同学最多糊了

  74×6-70×5=94(个)。

  

  

  

  

  

  

  

  

  51. 一副扑克牌共54张,最上面的一张是红桃K。如果每次把最上面的12张牌移到最下面而不改变它们的顺序及朝向,那么,至少经过多少次移动,红桃K才会又出现在最上面?

  解:因为[54,12]=108,所以每移动108张牌,又回到原来的状况。又因为每次移动12张牌,所以至少移动108÷12=9(次)。

  52. 爷爷对小明说:“我现在的年龄是你的7倍,过几年是你的6倍,再过若干年就分别是你的5倍、4倍、3倍、2倍。”你知道爷爷和小明现在的年龄吗?

  解:爷爷70岁,小明10岁。提示:爷爷和小明的年龄差是6,5,4,3,2的公倍数,又考虑到年龄的实际情况,取公倍数中最小的。(60岁)

  53. 某质数加6或减6得到的数仍是质数,在50以内你能找出几个这样的质数?并将它们写出来。

  解:11,13,17,23,37,47。

  54. 在放暑假的8月份,小明有五天是在姥姥家过的。这五天的日期除一天是合数外,其它四天的日期都是质数。这四个质数分别是这个合数减去1,这个合数加上1,这个合数乘上2减去1,这个合数乘上2加上1。问:小明是哪几天在姥姥家住的?

  解:设这个合数为a,则四个质数分别为(a-1),(a+1),(2a-1),(2a+1)。因为(a-1)与(a+1)是相差2的质数,在1~31中有五组:3,5;5,7;11,13;17,19;21,31。经试算,只有当a=6时,满足题意,所以这五天是8月5,6,7,11,13日。

  55. 有两个整数,它们的和恰好是两个数字相同的两位数,它们的乘积恰好是三个数字相同的三位数。求这两个整数。

  解:3,74;18,37。

  提示:三个数字相同的三位数必有因数111。因为111=3×37,所以这两个整数中有一个是37的倍数(只能是37或74),另一个是3的倍数。

  56. 在一根100厘米长的木棍上,从左至右每隔6厘米染一个红点,同时从右至左每隔5厘米也染一个红点,然后沿红点处将木棍逐段锯开。问:长度是1厘米的短木棍有多少根?

  解:因为100能被5整除,所以可以看做都是自左向右染色。因为6与5的最小公倍数是30,即在30厘米处同时染上红点,所以染色以30厘米为周期循环出现。一个周期的情况如下图所示:

  由上图知道,一个周期内有2根1厘米的木棍。所以三个周期即90厘米有6根,最后10厘米有1根,共7根。

  57. 某种商品按定价卖出可得利润960元,若按定价的80%出售,则亏损832元。问:商品的购入价是多少元?

  解:8000元。按两种价格出售的差额为960+832=1792(元),这个差额是按定价出售收入的20%,故按定价出售的收入为1792÷20%=8960(元),其中含利润960元,所以购入价为8000元。

  58. 甲桶的水比乙桶多20%,丙桶的水比甲桶少20%。乙、丙两桶哪桶水多?

  解:乙桶多。

  59. 学校数学竞赛出了A,B,C三道题,至少做对一道的有25人,其中做对A题的有10人,做对B题的有13人,做对C题的有15人。如果二道题都做对的只有1人,那么只做对两道题和只做对一道题的各有多少人?

  解:只做对两道题的人数为(10+13+15) -25 -2×1=11(人),只做对一道题的人数为25-11-1=13(人)。

  60. 学校举行棋类比赛,设象棋、围棋和军棋三项,每人最多参加两项。根据报名的人数,学校决定对象棋的前六名、围棋的前四名和军棋的前三名发放奖品。问:最多有几人获奖?最少有几人获奖?

  解:共有13人次获奖,故最多有13人获奖。又每人最多参加两项,即最多获两项奖,因此最少有7人获奖。

  61. 在前1000个自然数中,既不是平方数也不是立方数的自然数有多少个?

  解:因为312<1000<322,103=1000,所以在前1000个自然数中有31个平方数,10个立方数,同时还有3个六次方数(16,26,36)。所求自然数共有 1000-(31+10)+3=962(个)。

  62. 用数字0,1,2,3,4可以组成多少个不同的三位数(数字允许重复)?

  解:4*5*5=100个

  63. 要从五年级六个班中评选出学习、体育、卫生先进集体各一个,有多少种不同的评选结果?

  解:6*6*6=216种

  64. 已知15120=24×33×5×7,问:15120共有多少个不同的约数?

  解:15120的约数都可以表示成 2a×3b×5c×7d的形式,其中a=0,1,2,3,4,b=0,1,2,3,c=0,1,d=0,1,即a,b,c,d的可能取值分别有5, 4, 2, 2种,所以共有约数5×4×2×2=80(个)。

  65. 大林和小林共有小人书不超过50本,他们各自有小人书的数目有多少种可能的情况?

  解:他们一共可能有0~50本书,如果他们共有n本书,则大林可能有书0~n本,也就是说这n本书在两人之间的分配情况共有(n+1)种。所以不超过 50本书的所有可能的分配情况共有1+2+3…+51=1326(种)。

  66. 在右图中,从A点沿线段走最短路线到B点,每次走一步或两步,共有多少种不同走法?(注:路线相同步骤不同,认为是不同走法。)

  解:80种。提示:从A到B共有10条不同的路线,每条路线长5个线段。每次走一个或两个线段,每条路线有8种走法,所以不同走法共有 8×10=80(种)。

  67.有五本不同的书,分别借给3名同学,每人借一本,有多少种不同的借法?

  解:5*4*3=60种

  68.有三本不同的书被5名同学借走,每人最多借一本,有多少种不同的借法?

  解:5*4*3=60种

  69. 恰有两位数字相同的三位数共有多少个?

  解:在900个三位数中,三位数各不相同的有9×9×8=648(个),三位数全相同的有9个,恰有两位数相同的有900—648—9=243(个)。

  70. 从1,3,5中任取两个数字,从2,4,6中任取两个数字,共可组成多少个没有重复数字的四位数?

  解:三个奇数取两个有3种方法,三个偶数取两个也有3种方法。共有 3×3×4!=216(个)。

  71. 左下图中有多少个锐角?

  解:C(11,2)=55个

  72. 10个人围成一圈,从中选出两个不相邻的人,共有多少种不同选法?

  解:c(10,2)-10=35种

  73. 一牧场上的青草每天都匀速生长。这片青草可供27头牛吃6周,或供23头牛吃9周。那么可供21头牛吃几周?

  解:将1头牛1周吃的草看做1份,则27头牛6周吃162份,23头牛9周吃207份,这说明3周时间牧场长草207-162=45(份),即每周长草15份,牧场原有草162-15×6=72(份)。21头牛中的15头牛吃新长出的草,剩下的6头牛吃原有的草,吃完需72÷6=12(周)。

  74. 有一水池,池底有泉水不断涌出。要想把水池的水抽干, 10台抽水机需抽 8时,8台抽水机需抽12时。如果用6台抽水机,那么需抽多少小时?

  解:将1台抽水机1时抽的水当做1份。泉水每时涌出量为

  (8×12-10×8)÷(12-8)=4(份)。

  水池原有水(10-4)×8=48(份),6台抽水机需抽48÷(6-4)=24(时)。

  75. 规定a*b=(b+a)×b,求(2*3)*5。

  解:2*3=(3+2)*3=15

  15*5=(15+5)*5=100

  76. 1!+2!+3!+…+99!的个位数字是多少?

  解:1!+2!+3!+4!=1+2+6+24=33

  从5!开始,以后每一项的个位数字都是0

  所以1!+2!+3!+…+99!的个位数字是3。

  77(1).有一批四种颜色的小旗,任意取出三面排成一行,表示各种信号。在200个信号中至少有多少个信号完全相同?

  解:4*4*4=64

  200÷64=3……8

  所以至少有4个信号完全相同。

  (2)在今年入学的一年级新生中有 370多人是在同一年出生的。试说明:他们中至少有2个人是在同一天出生的。

  解:因为一年最多有366天,看做366个抽屉

  因为370>366,所以根据抽屉原理至少有2个人是在同一天出生的。

  78. 从前11个自然数中任意取出6个,求证:其中必有2个数互质。

  证明:把前11个自然数分成如下5组

  (1,2,3)(4,5)(6,7)(8,9)(10,11)

  6个数放入5组必然有2个数在同一组,那么这两个数必然互质。

  79. 小明去爬山,上山时每时行2.5千米,下山时每时行4千米,往返共用3.9时。小明往返一趟共行了多少千米?

  80. 长江沿岸有A,B两码头,已知客船从A到B每天航行500千米,从B到A每天航行400千米。如果客船在A,B两码头间往返航行5次共用18天,那么两码头间的距离是多少千米?

  解:800千米。 提示:从A到B与从B到A的速度比是5∶4,从A到B用

  81. 请在下式中插入一个数码,使之成为等式:

  1×11×111= 111111

  解答:91*11*111=111111

  82.甲、乙、丙三数的和是100,甲数除以乙数与丙数除以甲数的结果都是商5余1。问:乙数是多少?

  解:设乙数是x,那么甲数就是5x+1

  丙数是5(5x+1)+1=25x+6因此x+5x+1+25x+6=10031x=93 x=3

  所以乙数是3

  83.12345654321×(1+2+3+4+5+6+5+4+3+2+1)是哪个数的平方

  解:12345654321=111111的平方

  1+2+3+4+5+6+5+4+3+2+1=36=6的平方

  所以原式=666666的平方。

  84.某剧院有25排座位,后一排比前一排多2个座位,最后一排有70个座位。问:这个剧院一共有多少个座位?

  解:第一排有70-24*2=22个座位

  所以总座位数是(22+70)*25/2 =1150

  85. 某城市举行小学生数学竞赛,试卷共有20道题。评分标准是:答对一道给3分,没答的题每题给1分,答错一道扣1分。问:所有参赛学生的得分总和是奇数还是偶数?为什么?

  解:一定是偶数,因为每个人20道题得分都分别是奇数,20个奇数的和一定是偶数。每个人的得分都是偶数,所以无论有多少参赛学生,参赛学生的得分总和一定是偶数。

  86. 可以分解为三个质数之积的最小的三位数是几?

  解:102=2*3*17

  87. 两个质数的和是39,求这两个质数的积。

  解:注意到奇偶性可以知道这2个质数分别是2和37

  它们的乘积是2*37=74

  88. 有1,2,3,4,5,6,7,8,9九张牌,甲、乙、丙各拿了三张。甲说:“我的三张牌的积是48。”乙说:“我的三张牌的和是15。”丙说:“我的三张牌的积是63。”问:他们各拿了哪三张牌?

  解:63=7*1*9 所以丙拿的1,7,9

  48=2*3*8 所以甲拿的2,3,8

  4+5+6=15 因此乙拿的是4,5,6

  89. 四个连续自然数的积是3024,求这四个数。

  解:考虑末尾数字,1*2*3*4末尾是4

  6*7*8*9末尾也是4其他情况下末尾都是011*12*13*14=24024太大6*7*8*9=3024刚好

  所以这4个数是6,7,8,9

  90. 证明:任何一个三位数,连着写两遍得到一个六位数,这个六位数一定能被7,11,13整除。

  解:该数形如ABCABC=ABC*1001

  1001=7*11*13

  所以这个六位数一定能被7,11,13整除。

  91.在1~100中,所有的只有3个约数的自然数的和是多少?

  解:4+9+25+49=87

  92. 有一种电子钟,每到正点响一次铃,每过九分钟亮一次灯。如果中午12点整它既响铃又亮灯,那么下一次既响铃又亮灯是什么时间?

  解:[60,9]=180

  180/60=3下次是下午3点钟。

  93. 有一个数除以3余2,除以4余1。问:此数除以12余几?

  解:除以3余2的数是2,5,8,11,14。。。。。。

  除以4余1的数是1,5,9,。。。。。。

  所以此数除以12余5

  94. 把16拆成若干个自然数的和,要求这些自然数的乘积尽量大,应如何拆?

  解:16=3+3+3+3+2+2

  乘积是3*3*3*3*2*2=324

  95. 小明按1~ 3报数,小红按1~ 4报数。两人以同样的速度同时开始报数,当两人都报了100个数时,有多少次两人报的数相同?

  解:每12次作为一个周期

  1 2 3 1 2 3 1 2 3 1 2 3

  1 2 3 4 1 2 3 4 1 2 3 4

  每个周期两人有3次报的数一样

  100=12*8+4

  所以两个人有8*3+3=27次报的数相同。

  96. 某自然数加10或减10皆为平方数,求这个自然数。

  解:设这个数是x

  x+10=m^2

  x-10=n^2

  m^2-n^2=20 (m+n)(m-n)=20

  m=6,n=4

  所以x=6^2-10=26

  97. 已知某铁路桥长1000米,一列火车从桥上通过,测得火车从开始上桥到完全下桥共用120秒,整列火车完全在桥上的时间为80秒。求火车的速度和长度。

  解:120秒行驶的距离是桥长+车长

  80秒行驶的距离是桥长-车长

  所以80(1000+车长)=120(1000-车长)

  车长=200米

  火车的速度是10米/秒

  98. 甲、乙二人按顺时针方向沿圆形跑道练习跑步,已知甲跑一圈要12分,乙跑一圈要15分,如果他们分别从圆形跑道直径的两端同时出发,那么出发后多少分甲追上乙?

  解:(1/2)/(1/12-1/15)=(1/2)/(1/60)=30分钟

  99. 甲、乙比赛乒乓球,五局三胜。已知甲胜了第一局,并最终获胜。问:各局的胜负情况有多少种可能?

  解:甲 甲 甲

  甲 甲 乙 甲

  甲 甲 乙 乙 甲

  甲 乙 甲 甲

  甲 乙 甲 乙 甲

  甲 乙 乙 甲 甲

  经枚举发现共有6种可能。

  100. 甲、乙二人 2时共可加工 54个零件,甲加工 3时的零件比乙加工4时的零件还多4个。问:甲每时加工多少个零件?

  解:甲乙二人一小时共可加工零件27个

  设甲每小时加工x个,那么乙每小时加工27-x个

  根据条件得3x=4(27-x)+4

  7x=112 x=16

  答:甲每小时加工零件16个。

  ▍来源:网络等,版权归属原作者。

  ▍声明:本公众号转载的内容,仅作分享之用,如内容在版权上存在争议,请与我们联系删除。

  关注“周老师每日奥数”微信公众号

  每日有精彩分享!