一种通过计算机辅助抗体设计技术获得的靶向人表皮生长因子受体2的新型全人抗体HF

  [1]  Ferrara N, Hillan KJ, Gerber HP, Novotny W. Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov 2004;3(5):391–400.

  链接1

  [2]  Reichert JM, Valge-Archer VE. Development trends for monoclonal antibody cancer therapeutics. Nat Rev Drug Discov 2007;6(5):349–56.

  链接1

  [3]  Lippow SM, Wittrup KD, Tidor B. Computational design of antibody-affinity improvement beyond in vivo maturation. Nat Biotechnol 2007;25(10):1171–6.

  链接1

  [4]  Clark LA, Boriack-Sjodin PA, Eldredge J, Fitch C, Friedman B, Hanf KJM, et al. Affinity enhancement of an in vivo matured therapeutic antibody using structure-based computational design. Protein Sci 2006;15(5):949–60.

  链接1

  [5]  Lazar GA, Dang W, Karki S, Vafa O, Peng JS, Hyun L, et al. Engineered antibody Fc variants with enhanced effector function. Proc Natl Acad Sci USA 2006;103 (11):4005–10.

  链接1

  [6]  Carter PJ. Potent antibody therapeutics by design. Nat Rev Immunol 2006;6 (5):343–57.

  链接1

  [7]  Caravella JA, Wang D, Glaser SM, Lugovskoy A. Structure-guided design of antibodies. Curr Comput Aided Drug Des 2010;6(2):128–38.

  链接1

  [8]  Chang H, Qin W, Li Y, Zhang J, Lin Z, Lv M, et al. A novel human scFv fragment against TNF-a from de novo design method. Mol Immunol 2007;44 (15):3789–96.

  链接1

  [9]  Geng S, Chang H, Qin W, Lv M, Li Y, Feng J, et al. A novel anti-TNF scFv constructed with human antibody frameworks and antagonistic peptides. Immunol Res 2015;62(3):377–85.

  链接1

  [10]  Qin W, Feng J, Li Y, Lin Z, Shen B. De novo design TNF-a antagonistic peptide based on the complex structure of TNF-a with its neutralizing monoclonal antibody Z12. J Biotechnol 2006;125(1):57–63.

  链接1

  [11]  Qin W, Feng J, Li Y, Lin Z, Shen B. A novel domain antibody rationally designed against TNF-a using variable region of human heavy chain antibody as scaffolds to display antagonistic peptides. Mol Immunol 2007;44(9):2355–61.

  链接1

  [12]  Tagliabue E, Balsari A, Campiglio M, Pupa SM. HER2 as a target for breast cancer therapy. Expert Opin Biol Ther 2010;10(5):711–24.

  链接1

  [13]  Garnock-Jones KP, Keating GM, Scott LJ. Trastuzumab: a review of its use as adjuvant treatment in human epidermal growth factor receptor 2 (HER2) positive early breast cancer. Drugs 2010;70(2):215–39.

  链接1

  [14]  Ross JS, Slodkowska EA, Symmans WF, Pusztai L, Ravdin PM, Hortobagyi GN. The HER-2 receptor and breast cancer: ten years of targeted anti-HER-2 therapy and personalized medicine. Oncologist 2009;14(4):320–68.

  链接1

  [15]  Cho HS, Mason K, Ramyar KX, Stanley AM, Gabelli SB, Denney DW Jr, et al. Structure of the extracellular region of HER2 alone and in complex with the Herceptin Fab. Nature 2003;421(6924):756–60.

  [16]  Tomasevic N, Luehrsen K, Baer M, Palath V, Martinez D, Williams J, et al. A high affinity recombinant antibody to the human EphA3 receptor with enhanced ADCC activity. Growth Factors 2014;32(6):223–35.

  [17]  Gu X, Jia X, Feng J, Shen B, Huang Y, Geng S, et al. Molecular modeling and affinity determination of scFv antibody: proper linker peptide enhances its activity. Ann Biomed Eng 2010;38(2):537–49.

  链接1

  [18]  Jorgensen WL. The many roles of computation in drug discovery. Science 2004;303(5665):1813–8.

  链接1

  [19]  Crameri A, Cwirla S, Stemmer WPC. Construction and evolution of antibodyphage libraries by DMA shuffling. Nat Med 1996;2(1):100–2.

  链接1

  [20]  Hanes J, Jermutus L, Weber-Bornhauser S, Bosshard HR, Pluckthun A. Ribosome display efficiently selects and evolves high-affinity antibodies in vitro from immune libraries. Proc Natl Acad Sci USA 1998;95(24):14130–5.

  链接1

  [21]  Chevalier BS, Kortemme T, Chadsey MS, Baker D, Monnat RJ, Stoddard BL. Design, activity, and structure of a highly specific artificial endonuclease. Mol Cell 2002;10(4):895–905.

  链接1

  [22]  Kuhlman B, Dantas G, Ireton GC, Varani G, Stoddard BL, Baker D. Design of a novel globular protein fold with atomic-level accuracy. Science 2003;302 (5649):1364–8.

  链接1

  [23]  Dwyer MA, Looger LL, Hellinga HW. Computational design of a biologically active enzyme. Science 2004;304(5679):1967–71.

  链接1

  [24]  Kortemme T, Joachimiak LA, Bullock AN, Schuler AD, Stoddard BL, Baker D. Computational redesign of protein–protein interaction specificity. Nat Struct Mol Biol 2004;11(4):371–9.

  链接1

  [25]  He W, Qiang M, Ma W, Valente AJ, Quinones MP, Wang W, et al. Development of a synthetic promoter for macrophage gene therapy. Hum Gene Ther 2006;17(9):949–59.

  链接1

  [26]  Pantazes RJ, Grisewood MJ, Maranas CD. Recent advances in computational protein design. Curr Opin Struct Biol 2011;21(4):467–72.

  链接1