工程伦理作业05-01011703班张冠雷

  切尔诺贝利事故——案例分析

  简述:

  切尔诺贝利事件,是1986年4月26日于苏联乌克兰普里皮亚季市切尔诺贝利核电站发生的核反应堆破裂事故。该事故是历史上最严重的核电事故,也是首例被国际核事件分级表评为最高第七级事件的特大事故。事故的主因为反应堆进行紧急停机后的后备供电测试时,因操作人员的训练不足,最终使功率急剧增加,破坏反应堆。与早期各国核反应堆类似,RBMK-1000缺乏严重意外下的多重防护措施,设计缺陷使大量的辐射物质被释放到环境中。最初发生的蒸气爆炸导致两人死亡,接踵而至的绝大部分受害者的病因及死因都归咎于事故中释放的高能辐射,然而辐射尘少量放射导致的影响依旧争论不休。在苏联建成使用的与切尔诺贝利4号机组同型号的15座RBMK-1000反应堆中,除切尔诺贝利的4座于2000年前被相继关闭外,其余11座均运行至今,预计在2019年后逐步关闭。

  1986年4月26日凌晨1时23分47秒 (UTC+3),乌克兰普里皮亚季邻近的切尔诺贝利核电站的第四号反应堆发生爆炸。连续的爆炸引发大火并释放大量高能量辐射物质到大气层,这些辐射性尘埃覆盖了大面积区域。这次灾难所释放出的辐射线剂量是二战时期广岛原子弹爆炸的400倍以上。被核辐射尘污染的云层飘往众多地区,包括前苏联西部的部分地区、西欧、东欧、斯堪的纳维亚半岛、不列颠群岛和北美东部部分地区。此外,乌克兰、白俄罗斯及俄罗斯境内均受到严重的核污染,超过336,000名的居民被迫撤离。前苏联官方的报告表示,约60%受到辐射尘污染的地区皆位于白俄罗斯境内。经济上,这场灾难总共损失大概两千亿美元(已计算通货膨胀),是近代历史中代价最大的灾难。

  这次意外引起了全世界对于苏联核电工业上的安全顾虑,并减缓了一系列的核电工程进度。同时,此事件令苏联政府的讯息公布更趋透明化。苏联解体后的独联体及各独立国家,包括俄罗斯、乌克兰、白俄罗斯,至今仍为切尔诺贝利事件所遗留下来的污染问题付出极大的代价,以切尔诺贝利核电站为中心半径30公里内的大片乌克兰和白俄罗斯领土至今仍被两国政府列为管制区。此次事故对当地乃至全球生态造成了难以想像的负面影响,仅事件所造成的死亡人数就因多种原因难以精确计算,其中前苏联时期的刻意隐瞒,使得统计工作变得非常困难。事实上,前苏联当局在事件发生后不久,就禁止医生在死亡证明文件上提及“放射线”的死因事实。

  事故:

  蒸气涡轮测试计划

  反应堆余热:在正常状态下,核裂变反应堆有6%的功率来自反应产物之余热。在启动紧急停机后,尽管链式反应停止,但仍会继续产生余热,因此冷却系统必须持续运作以避免堆芯熔毁。

  空窗期:切尔诺贝利核电站的各机组均配备三台备用柴油发电机,以确保在紧急停机且电网异常时,冷却水泵持续作动。然而,尽管柴油发电机可在15秒内启动,却需要额外的60~75秒暖机。

  测试:由于本次测试主要牵涉电源切换,无明确风险,测试计划书也就仅由厂长批准,并未跟原设计厂NIKIET和核电管理单位再次确认。

  测试前置:

  一个小型发电站无预警跳机,为了满足基辅电网调度单位的要求,测试被推迟至当日深夜。

  受过训练的早班人员早已下班离开,晚班人员正准备交接下班,大夜班人员在午夜后将会独立作业。

  值班主任操作不当,代理总工程师执意继续进行。作出了一系列违反安全规范的操作。

  爆炸:

  凌晨1点23分04秒,测试正式开始。八个循环泵中有四个保持运作(正常运作下通常开启六个)。蒸气供应被切断,柴油发电机开始暖机,在1点23分43秒前,涡轮发电机必须要满足循环泵的用电需求。随着涡轮动量逐渐降低,发电量逐渐下降,泵输出的水流量也随之降少,蒸气气泡数量增加。

  在切尔诺贝利的RBMK石墨缓和反应器的特殊设计中有一个相当高的“空泡系数”(void coefficient),意味着在没有水、仅有水蒸气时,减低的中子吸收作用会使反应堆的功率迅速地增加,在这种情况下形成了一个危险的正反馈循环:蒸气气泡增加,降低了水吸收中子的效率,进而导致输出功率增加;而输出功率增加,又会导致更多的气泡产生。自动控制系统试图阻止正循环发生,但它只剩下12支控制棒的控制权,因而无能为力。

  凌晨1点23分40秒,根据SKALA中央控制系统的纪录,AZ-5按钮被按下,启动了紧急停机系统。启动AZ-5的理由是为了因应温度急遽上升的紧急措施。

  在AZ-5按钮被按下后,被抽出的全部控制棒开始重新插回反应堆中。控制棒的移动速度为每秒0.4米,完全插入7米高的核心需要18至20秒。RBMK反应堆控制棒的设计也是一个大问题。控制棒的尖端连结了一块促进链式反应的石墨。原本的设计用意是让控制棒抽出时,尖端的石墨能促进并均匀链式反应。但这也导致一开始插回控制棒时,尖端的石墨取代下方吸收中子的水,一来一往反而促进了反应速率。直到控制棒插入足够深,反应速率才终于被抑制而下降。此违反直觉的“先升后降”现象在1983年被立陶宛的伊格纳利纳核电站所发现,但因为该次停机顺利完成,事后此现象也就不为众人所重视。

  在紧急停机启动后7秒,石墨部分导致功率急剧上升,核心温度过高使部分燃料棒变形,堵住控制棒管道,于是控制棒仅能插入三分之一。卡在核心间的石墨继续促进链式反应,不到数秒功率便上升至530MW。高热进一步产生高压蒸气,促使燃料棒破裂融化,且蒸汽压力迅速增加,根据估计,此时反应堆功率为30,000MW,达到正常输出功率的10倍。控制面板最后测得的输出功率为33,000MW。终于因为蒸气压力过大,导致大规模的蒸汽爆炸,一口气将反应器2,000吨的上盖炸飞,冷却剂管道爆裂并在屋顶炸穿一个大洞。为了减少费用,也因它的体积太大,反应堆以单一保护层方式兴建,这令放射性污染物在反应堆压力容器发生蒸汽爆炸而破裂之后直接进入了大气。此为多数人听到的第一次爆炸。这次爆炸摧毁了更多燃料管道,大量的蒸气涌出,冷却水的持续流失令反应堆的输出功率继续上升。

  第二次爆炸在第一次爆炸后两至三秒发生,炉芯在这次爆炸中炸散,也因此停止了链式反应。然而,在氧气与极端高温的反应堆燃料和石墨慢化剂结合后,马上引起了熊熊燃烧的石墨火。产生了极大量的辐射落尘,使放射性物质扩散和污染的区域更广。

  事故原因:

  INSAG-1报告(1986):

  事件归因于人祸。报告中提到:“在后备涡轮测试的准备与执行阶段,操作人员关闭了一系列保护系统,违反了技术操作最重要的安全规定。”

  厂长维克托·布留哈诺夫只具有燃煤发电厂的训练经历和工作经验,基本上是负责政战的主管,事发半夜演习时并不在场,但主导演习的副厂长是核能专业。他的总工程师尼古拉·福明亦是来自一个常规能源厂。4号机的代理总工程师阿纳托利·佳特洛夫只有“一些小反应堆的经验”。

  INSAG-7报告(1992):

  有别于前一份报告,INSAG-7认为事故的主因来自反应堆的设计缺陷。问题主要分为两点:

  ?反应器有一个危险的空泡系数(void coefficient)。导致RBMK的设计在低水位时非常不稳定。

  ?第二个缺陷是控制棒的设计。尖端为石墨,一开始插入控制棒会增加反应速率。

  观点分析:

  两份观点不同的报告,其实代表着反应堆设计商,电厂,苏联政府与乌克兰政府间的激烈游说角力。另一方面,苏联当局始终没有公布电厂侦测器之原始数据,因此难以厘清部分细节。另一方面,国际原子能机构(International Atomic Energy Agency,IAEA)成员中的英国主张将调查结果公开化,而当时核电占全国总发电量2/3以上的法国则持反对意见,法国在当时国内电视广播的欧洲每日辐射计量版图上,将法国留作空白。

  总结来说,事故的主因仍然是人为因素居多。第一线人员固然草率地关闭安全系统,违反计划操作反应堆,但这也反映了电厂从设计,建造,发电到监管,各个环节对安全的极度漠视。乌克兰当局曾经解密一整批横跨1971至1988年,牵涉切尔诺贝利电厂的KGB档案。这段时间总共发生29起紧急状况,其中有8起属于人为因素,例如施工失误造成结构损伤,厂方却未加以改善。

  INSAG明确指出:"安全文化的缺乏导致了此次事故,这不仅是切尔诺贝利电厂,更是苏联核电设计,营运,监管的整体结构性问题。"